ارایه مدلی برای تعیین تعادل بازار انحصاری برق با تصمیمات سرمایه گذاری استراتژیک: مطالعه موردی شرکت های برق ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مدیریت، واحد دهاقان، دانشگاه آزاد اسلامی، دهاقان، ایران

2 گروه فنی مهندسی ، دانشکده مهندسی صنایع ، دانشگاه آزاد اسلامی ، نجف آباد ، ایران

3 گروه مدیریت،واحد دهاقان،دانشگاه آزاد اسلامی،دهاقان،ایران

4 گروه مدیریت،واحد دهاقان،دانشگاه آزاد اسلامی ،دهاقان،ایران

چکیده

هدف از این پژوهش استفاده از مدل‌های بهینه‌سازی و تعادل برای نشان دادن رفتار تولید کنندگان برق در بازار انحصارطلبی چند جانبه با حاشیه رقابتی است که در آن همه تولیدکنندگان تصمیمات سرمایه‌گذاری دارند. بازارهای عمده‌فروشی برق مدرن اغلب تولیدکنندگانی دارند که قدرت بازار را اعمال می کنند روش استاندارد برای مدل‌سازی قدرت بازار در یک انحصارطلبی با حاشیه رقابتی، استفاده از مسائل تکمیلی مختلط  و تغییرات حدسی است. با این حال، چنین مدل‌هایی می‌توانند منجر به رفتار تقریبا بهینه برای انحصارگرایان شوند. برای حل این مسئله، ما یک مساله تعادلی با محدودیت‌های تعادلی برای مدل‌سازی چنین ساختار بازار برق ایجاد می‌کنیم. در تعادل دو نوع بازیگر مدل‌سازی می‌شود. شرکت‌های قیمت‌گذار، که قدرت بازار دارند، و شرکت‌های قیمت‌پذیر که قدرتی برای اعمال قیمت بر بازار ندارند. مدل پیشنهادی تعادل های متعددی را برای تصمیمات سرمایه‌گذاری و سود شرکت‌ها پیدا می کند. مدل برای 2 شرکت برق قیمت‌پذیر و 2 شرکت برق قیمت گذار در ایران شبیه‌سازی شد. این تحقیق در سال 1402 انجام گرفت. در این مقاله شرکت های برق استان‌های اصفهان و بوشهر که دارای نیروگاه‌های برق نیز می‌باشند به عنوان قیمت‌گذار و شرکت‌های برق استان های خوزستان و  هرمزگان به عنوان قیمت‌پذیران در نظر گرفته شده اند. مدل ارایه شده نشان می‌دهد چگونه ممکن است برای شرکت‌های قیمت‌ گذار پذیرش زیان در برخی دوره‌های زمانی به منظور جلوگیری از انگیزه شرکت‌های قیمت‌پذیر از سرمایه‌گذاری بیشتر در بازار بهینه باشد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Presenting a Model to Determine the Equilibrium in an Electricity Oligopoly with Strategic Investment Decisions: a Case Study

نویسندگان [English]

  • Reza Basiri 1
  • Mansour Abedian 2
  • Saeed Aghsi 3
  • Zahra Dashtaali 4
1 Department of Management ,Dehaghan Branch, Islamic Azad University, Dehaghan, Iran
2 Department of Industrial Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
3 Department of Management ,Dehaghan Branch, Islamic Azad University, Dehaghan, Iran
4 Department of Management , Dehaghan Branch, Islamic Azad University, Dehaghan, Iran
چکیده [English]

The purpose of this paper is to use optimization and equilibrium models to study the behavior of electricity producers in a multilateral oligopoly market with a competitive margin in which all producers have investment decisions. Modern wholesale electricity markets often have producers who exercise market power. The standard method for modeling market power in a monopoly with a competitive fringe is to use Mixed Complementarity Problems (MCPs) and conjecture variations. However, such models can lead to near-optimal behavior for monopolists. To solve this problem, we develop an equilibrium problem with equilibrium constraints to model an electricity market structure. It is modeled in the equilibrium of two types of players. Price-maker companies, which have market power, and price-taking companies, which do not have the power to impose prices on the market. The proposed model finds multiple equilibrium for firms' investment and profit decisions. The model was simulated for 2 price-setting electricity companies and 2 price-setting electricity companies in Iran. This research was done in 2022. In this article, the power companies of Isfahan and Boushehr provinces, which also have power plants, are considered as price takers, and the power companies of Khouzestan and Hormozgan provinces are considered as price takers. The presented model shows how it may be optimal for price-making companies to accept losses in some periods in order to prevent more investment of price-taking companies in the market.

کلیدواژه‌ها [English]

  • price-taking: price-making
  • equilibrium
  • Oligopoly
  1. Andoni, M., Robu, V., Couraud, B., Früh, W. G., Norbu, S., & Flynn, D. (2021). Analysis of strategic renewable energy, grid and storage capacity investments via Stackelberg-cournot modelling. IEEE Access, 9, 37752-37771.
  2. Ansari, D., & Holz, F. (2019). Anticipating global energy, climate and policy in 2055: Constructing qualitative and quantitative narratives. Energy Research & Social Science, 58, 101250.‏
  3. ‏ Basiri, R., Abedian, M., Aghasi, S., & Dashtaali, Z. (2024). A dynamic analysis of the firms in oligopoly market structure: a case study. Journal of Modelling in Management.‏
  4. Baltensperger, T., Füchslin, R. M., Krütli, P., & Lygeros, J. (2016). Multiplicity of equilibria in conjectural variations models of natural gas markets. European Journal of Operational Research, 252(2), 646-656.‏
  5. Bischi, G. I., Baiardi, L. C., Lamantia, F., & Radi, D. (2024). Nonlinear dynamics and game-theoretic modeling in economics and finance. Annals of Operations Research, 337(3), 731-737.‏
  6. Bushnell, J. B., Mansur, E. T., & Saravia, C. (2008). Vertical arrangements, market structure, and competition: An analysis of restructured US electricity markets. American Economic Review, 98(1), 237-266.‏
  7. Conejo, A. J., Contreras, J., Arroyo, J. M., & De la Torre, S. (2002). Optimal response of an oligopolistic generating company to a competitive pool-based electric power market. IEEE transactions on power systems, 17(2), 424-430.‏
  8. Devine, M. T., & Bertsch, V. (2018). Examining the benefits of load shedding strategies using a rolling-horizon stochastic mixed complementarity equilibrium model. European Journal of Operational Research, 267(2), 643-658.‏
  9. Devine, M. T., & Bertsch, V. (2023). The role of demand response in mitigating market power: a quantitative analysis using a stochastic market equilibrium model. OR Spectrum, 45(2), 555-597.‏
  10. Devine, M. T., Nolan, S., Lynch, M. Á., & O’Malley, M. (2019). The effect of demand response and wind generation on electricity investment and operation. Sustainable Energy, Grids and Networks, 17, 100190.‏
  11. Egging-Bratseth, R., Baltensperger, T., & Tomasgard, A. (2020). Solving oligopolistic equilibrium problems with convex optimization. European Journal of Operational Research, 284(1), 44-52.‏
  12. Facchinei, F. (2003). Finite-dimensional variational inequalities and complementarity problems.‏
  13. Fanzeres, B., Street, A., & Pozo, D. (2020). A column-and-constraint generation algorithm to find Nash equilibrium in pool-based electricity markets. Electric power systems research, 189, 106806.‏
  14. Gabriel, S. A., Zhuang, J., & Egging, R. (2009). Solving stochastic complementarity problems in energy market modeling using scenario reduction. European Journal of Operational Research, 197(3), 1028-1040.‏
  15. Li, L., Chen, J., & Raghunathan, S. (2018). Recommender system rethink: Implications for an electronic marketplace with competing manufacturers. Information Systems Research, 29(4), 1003-1023.‏
  16. Habibian, M., Downward, A., & Zakeri, G. (2020). Multistage stochastic demand-side management for price-making major consumers of electricity in a co-optimized energy and reserve market. European Journal of Operational Research, 280(2), 671-688.‏
  17. Hu, X., & Ralph, D. (2007). Using EPECs to model bilevel games in restructured electricity markets with locational prices. Operations research, 55(5), 809-827.‏
  18. Hommes, C. H., Ochea, M. I., & Tuinstra, J. (2018). Evolutionary competition between adjustment processes in cournot oligopoly: instability and complex dynamics. Dynamic Games and Applications, 8, 822-843.‏
  19. Huang, Q., Xu, Y., & Courcoubetis, C. (2020). Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets. Applied Energy, 264, 114669.‏
  20. Huang, S., Wu, Y., Zhao, Z., Wu, B., Sun, K., Wang, H., ... & Tang, W. (2021). A new mechanism of obeticholic acid on NASH treatment by inhibiting NLRP3 inflammasome activation in macrophage. Metabolism, 120, 154797.‏
  21. Huang, Q., Xu, Y., & Courcoubetis, C. (2020). Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets. Applied Energy, 264, 114669.‏
  22. Huppmann, D. (2013). Endogenous shifts in OPEC market power: A Stackelberg oligopoly with fringe.‏
  23. Kimbrough, S. O., Murphy, F., & Smeers, Y. (2014). Extending Cournot: When does insight dissipate?. Fox School of Business Research Paper, (14-036).‏
  24. Pozo, D., & Contreras, J. (2011). Finding multiple nash equilibria in pool-based markets: A stochastic EPEC approach. IEEE Transactions on Power Systems, 26(3), 1744-1752.‏
  25. Pozo, D., Sauma, E., & Contreras, J. (2017). Basic theoretical foundations and insights on bilevel models and their applications to power systems. Annals of Operations Research, 254, 303-334.‏
  26. Ruiz, C., & Conejo, A. J. (2009). Pool strategy of a producer with endogenous formation of locational marginal prices. IEEE Transactions on Power Systems, 24(4), 1855-1866.‏
  27. Steeger, G., & Rebennack, S. (2017). Dynamic convexification within nested Benders decomposition using Lagrangian relaxation: An application to the strategic bidding problem. European Journal of Operational Research, 257(2), 669-686.‏
  28. Tangerås, T. P., & Mauritzen, J. (2018). Real‐time versus day‐ahead market power in a hydro‐based electricity market. The Journal of industrial economics, 66(4), 904-941.‏
  29. Zerrahn, A., & Huppmann, D. (2017). Network expansion to mitigate market power. Networks and Spatial Economics, 17, 611-644.‏