Portfolio Optimization Using Three-Objective Particle Swarm Optimization

Document Type : Research Paper

Authors

1 Ph.D. Candidate in Economics, Razi University

2 Associate Professor of Economics, Razi University

Abstract

In optimizing the portfolio, the main issue is the optimal selection of assets that can be bought with a certain amount of money. Although risk minimizing and revenue maximizing on investment seems simple, but in practice several approaches have been proposed for an optimal portfolio. In 1950, Harry Marquitz introduced his model in which proposed the optimization of the asset basket as a quadratic programing model with the aim of minimizing the variance of the asset set, provided that the expected return equals a constant value. In this research, the problem of three-objective optimization (i.e., maximizing stock returns, minimizing its risk and the third objective function, namely minimizing the number of assets) has been studied. Accordingly, investors, with admission a small amount of risk and a similar amount of return, will choose a basket of less assets. For this purpose, at first, genetic algorithms and multi- Particle Swarm Optimization algorithm were used to estimate the two-objective model of minimum variance and maximum return for better algorithm identification. Then, with regard to the better performance of the algorithm, this algorithm was used to estimate the three-objective model for maximizing stock returns, minimizing risk, and minimizing the number of assets.

Keywords

Main Subjects


  1. Abdolalizade, Sh., & Eshghi. K (2004). Portfolio optimization using Genetic Algoritm. Journal of Economic Research, 5(17), 175-192 (In Persian).
  2. Asgharpor. H., & Rezazade. A, (2016). Determining the stock optimal portfolio using value at risk. Applied Theories of Economics, 3(4), 93-118 (In Persian).
  3. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems, New York, Oxford University Press.
  4. Celikyurt. U, & Ozekici. S (2007). Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach. European Journal of Operational Research (179), 186–202.
  5. Clerc, M. (2006). Particle swarm optimization.London, ISTE.
  6. Chang, T., Meade, N., & Sharaiha, J. (2000). Heuristics for cardinality constrained portfolio optimization. Computers & Operations Research 27: 1271–1302.
  7. Coello, C.A.C., & Lechuga, M.S. (2002). MOPSO, A Proposal for multiple objective particle swarm optimization. Congress on Evolutionary Computation (CEC’2002), Vol. 2, 1051–1056.
  8. Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist nondominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In proceedings of parallel problem solving from nature - PPSN VI, Springer 849–858.
  9. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. John Wiley & Sons, Chichester, UK.
  10. Engelbrecht, A. P. (2005). Fundamentals of computational swarm intelligence. Hoboken, NJ: Wiley
  11. Fernandez, A,. Gomez, S. (2007). Portfolio selection using neural networks. Computers & Operations Research (34), 1177–1191.
  12. Fieldsend, E., & Singh, S. (2002). A Multi-objective algorithm based upon particle swarm optimisation, an Eefficient data structure and turbulence, proceedings of the 2002. Workshop on Computational Intelligence, Birmingham, UK 37–44.
  13. Fonseca, C.M., & Fleming, P.J. (1993). Genetic algorithms for 13- multiobjective optimization, formulation, discussion, and generalization. In Proceedings of the Fifth International Conference on Genetic Algorithms 355–365.
  14. Goldberg, D.E., & Richardson, J.J. (1987). Genetic algorithms with sharing for multimodal function optimization. Genetic Algorithms and Their Applications, Proceedings of the Second ICGA, Lawrence Erlbaum Associates, Hillsdale, NJ, 41–49.
  15. Haupt, R. L., & Haupt, S. E. (1998). Practical genetic algorithms. New York: Wiley.
  16. Horn, J., Nafpliotis, N., & Goldberg, D.E. (1994). A niched pareto genetic algorithm for multiobjective optimization. In Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, vol: 1, Piscataway, New Jersey. IEEE Service Center 82–87.
  17. Kennedy, J., & Eberhart. R.C. (1995). Particle swarm optimization. IEEE Int’l Conf. on Neural Networks, (4),1942–1948.
  18. Kennedy, J., & Shi, Y. (2001). Swarm intelligence. San Francisco: Morgan Kaufmann Publishers.
  19.  Konno, H., & Yamazaki, H. (1991). Mean-absolute deviation portfolio in optimization model and its application to Tokyo stock market. Management Science, (37) 519–531.
  20. Markowitz, H. (1952). Portfolio selection. Journal of Finance, 77-90
  21. Miettinen, K. (1999). Evolutionary algorithms in engineering and computer science: recent advances in genetic algorithms, evolution strategies, evolutionary programming, genetic programming, and industrial applications. Chichester; New York: Wiley.
  22. Mitchell, M. (1998). An introduction to genetic algorithms. Cambridge, Mass.: MIT Press.
  23. Moshekhian, S., & Najafi, A. (2015). Portfolio optimization using multi-objective particle swarm optimization. Financial Engineering and Portfolio Management, 6(23), 133-147 (In Persian).
  24. Narimani, A., & Narimani, R. (2014). Portfolio management by using MATLAB & GAMS, Naghos (In Persian).
  25. Olsson, A. (2011). Particle swarm optimization: theory, techniques and applications. New York: Nova Science Publishers.
  26. Otten, R., & Ginneken, L.  (1989). The annealing algorithm. Boston: Kluwer Academic Publishers.
  27. Parsopoulos, K., & Vrahatis, M.N. (2002). Particle swarm optimization method in multiobjective problems. Symposium on Applied Computing (SAC’2002) 603–607.
  28. Raei, R., & Alibaigi, H. (2011). Portfolio optimization using particle swarm optimization method. Financial Research Journal, (29) 21-41 (In Persian).
  29. Raie, R., & Poutanfar, A. (2012). Advanced investment management. The Organization for Researching and Composing Univercity Textbook in the Humanities, 175-192 (In Persian).
  30. Raie, R., & Talangi, A. (2005). Advanced Investment Management. The Organization for Researching and Composing Univercity Textbook in the Humanities, 175-192 (In Persian).
  31. Rajabi, M., & Khalozade, H. (2015). Optimal portfolio prediction in Tehran stock market using multi-objective evolutionary algorithms, NSGA-II and MOPSO. Financial Research Journal, 16(2), 253-270 (In Persian).
  32. Sumathi, S., Hamsapriya, T., & Surekha, P. (2008). Evolutionary intelligence: an introduction to theory and applications with Matlab, Berlin: Springer.
  33. Taghavifard, M., & Mansouri, T. (2008). A Meta-heuristic algorithm for portfolio selection problem under cardinality and bounding constraints. The Economic Research, 7(4), 49-69 (In Persian).
  34. Venkataraman, P. (2002). Applied optimization with MATLAB programming. New York: Wiley.
  35. Yin Peng, Y., & Jing Yu, W. (2006). A particle swarm optimization approach to the nonlinear resource allocation problem. Applied Mathematics and Computation, 183: 232–242.
  36. Yan, W., & Shurong, L. (2007). Multi-period semi-variance portfolio selection: Model and numerical solution. Applied Mathematics and Computation, (194),128–134.
  37. Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms, empirical results. Evolutionary Computation, 8(2),173–195.