برنامه‌ریزی گسترش ظرفیت تولید برق با اهداف اقتصادی و زیست‌محیطی تحت شرایط عدم‌حتمیت: مطالعه موردی استان کرمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اقتصاد دانشگاه شهید باهنر کرمان

2 دانشیار اقتصاد دانشگاه شهید باهنر کرمان

3 استاد اقتصاد دانشگاه شهید باهنر کرمان

4 دانشیار مهندسی برق- قدرت دانشگاه شهید باهنر کرمان

چکیده

برنامه‌‌‌‌‌ریزی برای گسترش تولید GEP))، مساله تعیین استراتژی بهینه برای برنامه‌‌‌‌‌ریزی ساخت نیروگاه‌های جدید با رعایت محدودیت‌‌‌‌‌های فنی و اقتصادی است. در طی چند سال اخیر مسایل زیست-محیطی نیز به دغدغه‌های اصلی برنامه‌ریزان نیروگاه‌ها اضافه شده‌است. هدف این مطالعه بررسی مدل برنامه‌ریزی گسترش ظرفیت تولید برق چند هدفه برای مطالعه تغییرات در تصمیم‌‌های تولید و آلودگی دی‌‌‌‌‌اکسید‌‌‌‌‌کربن تحت عدم حتمیت در تقاضا و عرضه برق می‌باشد. عدم حتمیت‌های تقاضا و ضریب ظرفیت تولیدی برق (عدم حتمیت عرضه‌ی برق) به‌صورت یک مجموعه فازی بیان شد. مدل فازی چند هدفه برای سیستم برنامه‌ریزی گسترش ظرفیت تولید برق استان کرمان برای یک دوره‌ی 12 ساله به کار گرفته شد. نتایج مطالعه نشان داد که برای پاسخ به تقاضا و تأمین همزمان اهداف اقتصادی (حداقل‌‌‌‌‌سازی هزینه‌های تولید) و زیست‌‌‌‌‌محیطی (حداقل‌‌‌‌‌سازی هزینه‌های آلودگی دی‌‌‌‌‌اکسید‌‌‌‌‌کربن) تحت شرایط عدم حتمیت تقاضا و ضریب ظرفیت تولید، بایستی ظرفیت فناوری‌های برق بادی، برق‎آبی و سوخت زغال‌‌‌‌‌سنگ به ترتیب باید بیشترین گسترش را یابد. این در حالی است که اگر تنها هدف اقتصادی در نظر گرفته شود، برنامه‌ریزی به‌صورت افزایش ظرفیت تولید برق از انرژی زغال‌‌‌‌‌سنگ خواهد بود. همچنین برای تأمین هدف زیست‌‌‌‌‌محیطی، به ترتیب بیشترین گسترش در ظرفیت فناوری‌های تجدیدپذیر برق بادی، برق‎آبی و فتوولتائیک در برنامه‌ریزی قرار دارد. تفاوت در نتایج، اهمیت تحلیل یکپارچه و جامع برنامه‌ریزی گسترش ظرفیت تولید برق را نمایان می‌سازد. بنابراین، تصمیم‌سازان می‌توانند در چارچوب نگاه همه جانبه اقتصادی و زیست‌‌‌‌‌محیطی و لحاظ عدم حتمیت‌های طرف تقاضا و عرضه به برنامه‌ریزی پایدار گسترش ظرفیت تولید برق بپردازند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Generation Power Capacity Expansion Economic-Environmental Planning under Uncertainty: Case Study of Kerman Province

نویسندگان [English]

  • Yahya Hatami 1
  • Zeinolabedin Sadeghi 2
  • Seyyed Abdolmajid Jalayi 3
  • Amir Abdollahi 4
1 Ph.D. Candidate in Economics, Shahid Bahonar University of Kerman
2 Associate Professor of Economics, Shahid Bahonar University of Kerman
3 Professor of Economics, Shahid Bahonar University of Kerman
4 Associate Professor of Electrical Engineering, Shahid Bahonar University of Kerman
چکیده [English]

Generation expansion planning (GEP) includes determining the optimal strategy to plan the construction of new generation plants while satisfying technical and economic constraints.
Generation expansion planning (GEP) includes determining the optimal strategy to plan the construction of new generation plants while satisfying technical and economic constraints. The purpose of this study is to examine a multi-Objective power generation capacity expansion planning model for studying changes in production decisions and carbon dioxide contamination under uncertainty of power demand and supply. Uncertainty of demand and power generation capacity factor (supply uncertainty) were expressed as a fuzzy set, and a fuzzy multi-objective nonlinear model  was used for a case study of Kerman power generation capacity expansion planning system for a 12-year period. The result of the study showed that in order to meet demand and to ensure the economic (minimizing production costs) and environmental (minimizing the costs of carbon dioxide pollution) objectives in the same time under the uncertainty of demand and generation capacity factor, the capacity of wind and water technology along with coal fuel should be respectively expanded by almost. However, as far as only economic goals are concerned, the plan will include the increase of coal fuel electricity production capacity. Furthermore, to meet environmental goal, capacity expansion of renewable wind, water and photovoltaic power technologies are respectively expected in the plan. The difference in results reveals the importance of integrated and comprehensive planning for the power generation capacity expansion planning.

کلیدواژه‌ها [English]

  • Planning of generation power capacity
  • Uncertainty
  • Carbon dioxide pollution
  • Multi-objective fuzzy programming model
  1. صنعت برق ایران (1396). ناشر: شرکت توانیر

 

  1. Baringo, L., & Conejo, AJ. (2012). Wind power investment: A benders decomposition approach. IEEE Transaction on Power Systems, 27(1), 433–441.
  2. Beard, L. M., Cardell, J. B., Dobson, I., Galvan, F., Hawkins, D., Jewell, W, & Tylavsky, D. J. (2010). Key technical challenges for the electric power industry and climate change. IEEE Transactions on Energy Conversion, 25(2), 465-473.
  3. Betancourt-Torcat, A., & Almansoori, A. (2015). Design multi-period optimization model for the electricity sector under uncertainty – a case study of the Emirate of Abu Dhabi. Energy Conversation Management, 100, 177–90.
  4. El-Khattam, W., Hegazy, YG., & Salama, MMA. (2005). An integrated distributed generation optimization model for distribution system planning. IEEE Transaction on Power Systems, 20(2):1158–65.
  5. Franco, J. F., Rider, M. J., & Romero, R. (2014). A mixed-integer quadratically-constrained programming model for the distribution system expansion planning. Electrical Power and Energy System, 62, 265–72.
  6. Fu, Q., Li, M., Singh, V., Ma, M., & Liu, X. (2017). An intuitionistic fuzzy multi objective non-linear programming model for sustainable irrigation water allocation under the combination of dry and wet conditions. Journal of Hydrology, 555, 80–94.
  7. Hinojosa, V, & Velásquez, J. (2016). Improving the mathematical formulation of security-constrained generation capacity expansion planning using power transmission distribution factors and line outage distribution factors, Electric Power Systems Research. 140, 391–400.
  8. Huang, G.H., Zhang, X.Y., Zhu, H., & Li, Y.P. (2017). A fuzzy-stochastic power system planning model: Reflection of dual objectives and dual uncertainties. Energy, 123, 664-676.
  9. Jornada, D., & Leon, V. J. (2016). Robustness methodology to aid multiobjective decision making in the electricity generation capacity expansion problem to minimize cost and water withdrawal. Applied energy, 162, 1089-1108.
  10. Jirutitijaroen, P., & Singh, C. (2008). Reliability constrained multi-area adequacy planning using stochastic programming with sample-average approximations. IEEE Transaction on Power Systems, 23(2):504–13.
  11. Iran electric power industry (2017). Publisher: Tavanir holding company (In Persian)
  12. Kheawhom, S., & Kittisupakorn, P. (2005). Multi-objective design space exploration under uncertainty. In: European symposium on computer-aided process engineering-15, 38th European symposium of the working party on computer aided process engineering. Computer Aided Chemical Engineering, 20, 145–50.
  13. Klein, G., Moskowitz, H., & Ravindran, A. (1990). Interactive multi-objective optimization under uncertainty. Management Science, 36(1), 58–75.
  14. Lai, Y. J. & Hwang, C. L. (1994). Fuzzy Multiple Objective Decision Making. Springer, New York.
  15. Lu, Z., Qi, J., Wen, B., & Li, X. (2016). A dynamic model for generation expansion planning based on Conditional Value-at-Risk theory under Low-Carbon Economy. Electric Power Systems Research, 141, 363–371
  16. Meza, J. L. C., Yildirim, M. B., & Masud, A. S. (2007). A model for the multi period multi objective power generation expansion problem. IEEE Transaction on Power Systems, 22(2), 871–8.
  17. Monsef, H., Bagheri, A., & lesani, H. (2015). Integrated distribution network expansion planning incorporating distributed generation considering uncertainties, reliability, and operational conditions. Electrical Power and Energy Systems, 73, 56-70.
  18. Oree, V., Hasen, S.Z.S., & Fleming, P.J. (2017). Generation expansion planning optimization with renewable energy integration: A review. Renewable and Sustainable Energy Reviews, 69, 790–803.
  19. Osmani, A. and Zhang, J. (2014). Optimal grid design and logistic planning for wind and biomass based renewable electricity supply chains under uncertainties. Energy, 70, 514-528.
  20. Park, H., & Baldick, R. (2016). Stochastic generation capacity expansion planning reducing greenhouse gas emissions. IEEE Transaction on Power Systems, 30(2), 1026–1034.
  21. Pineda, S., Morales, J., Ding, Y., & Ostergaard, J. (2014). Impact of equipment failures and wind correlation on generation expansion planning. Electric Power Systems Research, 116, 451–458.
  22. Pinho, J., Resende, J., & Soares, I. (2018). Capacity investment in electricity markets under supply and demand uncertainty. Energy, 150, 1006-1017.
  23. Rani, D., Gulati, T. R., & Garg, H. (2016). Multi-objective non-linear programming problem in intuitionistic fuzzy environment: Optimistic and pessimistic view point. Expert Systems with Applications, 64, 228-238.
  24. Sabio, N., Pozo, C., Guillen-Gosabez, G., Jimenez, L., Karuppiah, R., Vasudevan, V., Sawaya, N, & Farrell, J. T. (2014). Multi-objective optimization under uncertainty of the economic and life-cycle environmental performance of industrial processes. AIChE Journal, 60(6), 2098–2121.
  25. Sadeghi, H., Abdollahi, A., & Rashidinejad, M. (2015). Evaluating the impact of FIT financial burden on social welfare in renewable expansion planning. Renewable Energy, 75, 199-209.
  26. Samper, M.E., Vargas, A, & Rivera, S. (2008). Fuzzy Assessment of Electricity Generation Costs Applied to Distributed Generation. Comparison with Retail Electricity Supply Costs, supported by CONICE, in Argentina.
  27. Statistical Review of World Energy. (2018). http://www.bp.com/statistical review.
  28. Tekiner, H., Coit, D., Felder, F. (2012). Electric power system generation expansion plans considering the impact of smart grid technologies. International Journal Electric Power and Energy System, 42, 229–239.
  29. Tong, LI., Saminathan, R. & Chang, CW. (2016). Uncertainty assessment of non-normal emission estimates using non-parametric bootstrap confidence intervals. Journal Environmental of Informatics, 28(1), 61-70.
  30. Wu, Y. K, & Guu, S. M. (2001). A compromise model for solving fuzzy multiple objective linear programming problems. Journal of the Chinese Institute of Industrial Engineers, 18(5), 87-93.
  31. Zhang, Y.M. et al., (2009). Inexact de Novo programming for water resources planning. European Journal of Operational Research, 199, 531–541.
  32. Zimmermann, HJ. (2001). Fuzzy set theory and its applications. Springer Science & Business Media.
  33. United Nations. Dept. of Economic and Social Affairs (1972). Electricity Costs and Tariffs: A General Study. Publisher Department Economic and Social Affair.