پویایی‌های رابطه بین متغیرهای کلان اقتصادی و بی‌ثباتی بازده سهام بورس اوراق بهادار تهران: رویکرد تغییر رژیم مارکف آرما گارچ چند متغیره

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استاد اقتصاد دانشگاه ارومیه

2 کارشناس ارشد اقتصاد دانشگاه ارومیه

چکیده

بررسی تغییرات بوجود آمده در قیمت بازار سهام، همواره یکی از مهمترین چالش‌های بورس اوراق بهادار تهران بوده است. اهمیت این مسأله ناشی از کاربردهای آن در پیش‌بینی بی‌ثباتی قیمت سهام در بورس اوراق بهادار است. لذا هدف این مقاله، بررسی و تحلیل نیروها و مکانیزم‌هایی است که باعث ایجاد بی‌ثباتی بوجود آمده در بازدهی سهام می‌شوند. ازاین‌رو، این مطالعه به بررسی تأثیر برخی از مهمترین متغیرهای کلان اقتصادی تأثیرگذار بر بی‌ثباتی بازدهی سهام بورس اوراق بهادار تهران در رژیم‌های مختلف طی بازه زمانی 1394:3-1376:3 با استفاده از رهیافت غیرخطی تغییر رژیم مارکف آرما گارچ چند متغیره (Multivariate MS-ARMA-GARCH) می‌پردازد. نتایج مطالعه نشان می‌دهد که نرخ رشد تولید ناخالص داخلی تأثیر منفی و معنادار بر بی‌ثباتی بازده سهام دارد. نرخ تورم، نرخ رشد عرضه پول و بی‌ثباتی نرخ ارز تأثیر مثبت و معناداری در رژیم‌های مختلف دارند ولی بی‌ثباتی قیمت نفت اثرات متفاوتی بر بی‌ثباتی بازدهی سهام دارد. علاوه بر این، نتایج نشان می‌دهد که پایداری رژیم کم بازده (رژیم خرسی) بیشتر از رژیم پر بازده (رژیم گاوی) می‌باشد. از این‌رو، پیشنهاد می‌شود برنامه‌ریزان و مسئولین اقتصادی از طریق اتخاذ و اجرای سیاست‌های مناسبی جهت افزایش رشد اقتصادی نظیر؛ تخصیص بهینه منابع، افزایش رقابت‌پذیری، همچنین تمرکز بر دیگر ظرفیت‌های اقتصادی کشور مانند اقتصاد دانش بنیان، افزایش میزان گردشگری، بخش حمل-و‌نقل، فناوری اطلاعات و ارتباطات، استفاده از ظرفیت‌های بخش خصوصی و افزایش سرمایه‌گذاری و همچنین یکسان‌سازی نرخ ارز برای کاهش بی‌ثباتی نرخ ارز و کاهش میزان حجم پول و نرخ تورم جهت کاهش بی‌ثباتی در بازده بازار سهام، اتخاذ نمایند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Dynamic Relationship between Macroeconomic Variables and Stock Return Volatility in Tehran Stock Exchange: Multivariate MS ARMA GARCH Approach

نویسندگان [English]

  • Hassan Heidari 1
  • Arash Refah-Kahriz 2
  • Nayyer Hashemi Berenjabadi 2
1 Professor of Economics, Urmia University
2 M.A. in Economics, Urmia University
چکیده [English]

Investigation of changes in the stock price in Tehran Stock Exchange (TSE) has been always one of the most important challenges in the TSE. The importance of this issue is due to its applications in forecasting the stock price volatility in the stock exchange. Hence, this study investigates the impact of the most important macroeconomic variables which affects the stock return volatility in Tehran Stock Exchange in different regimes during the period 1998:1- 2015:4 by applying non-linear Multivariate MS-ARMA-GARCH approach. The results show that the rate of GDP growth has a significant negative impact on the stock return volatility. The inflation rate, money growth rate and exchange rate volatility have a significant positive impact in different regimes but, oil price volatility has different effects on the stock return volatility. In addition, the results show that the stability in the low return regime (bear regime) is more than the high return regime (bull regime). Therefore, the results recommend that planners and economic authorities through the adopting and implementation of appropriate policies to increase economic growth such as optimal allocation of resources, increased competitiveness, as well as focusing on other economic capacities of the country such as knowledge economy, increasing tourism, transportation sector, information and communication technology, using private sector capacities and increasing investment and also unification of the exchange rate to reduce the exchange rate volatility and reducing the supply of money and inflation rate to reduce volatility in the stock market return.

کلیدواژه‌ها [English]

  • Bull & Bear regimes
  • Macroeconomic variables
  • Multivariate MS ARMA GARCH approach
  • Nonlinear effects
  • Stock return volatility
  1. حلافی، حمیدرضا، و سعیدی، سیدناصر (1391). بررسی واکنش­های متقابل نااطمینانی در نرخ ارز و شاخص قیمت سهام بورس تهران. فصلنامه اقتصاد مقداری، 9(1)، 53-37.
  2. راعی، رضا، محمدی، شاپور، و سارنج، علیرضا (1393). پویایی­های بورس اوراق بهادار تهران با استفاده از مدل گارچ نمایی در میانگین سوئیچینگ مارکوف. تحقیقات مالی، 16(1)، 98-77.
  3. رضازاده، علی (1395). تاثیر متغیرهای کلان اقتصاد بر بی­ثباتی بازدهی سهام بورس اوراق بهادار تهران: مشاهداتی بر پایه مدل GARCH-X. نظریه­های کاربردی اقتصاد، 3(2)، 136-121.
  4. شریعت پناهی، مجید، و بیاتی، مصطفی (1385). بررسی رابطه تورم و شاخص قیمت سهام و شاخص بازده نقدی قیمت سهام بورس اوراق بهادار تهران. فصلنامه مطالعات تجربی حسابداری مالی، 4(13)، 154-139.
  5. عباسیان، عزت اله، مرادپور اولادی، مهدی، و عباسیون، وحید (1387). اثر متغیرهای کلان اقتصادی بر شاخص کل بورس اوراق بهادار تهران. پژوهش­های اقتصادی ایران، 12(36)، 152-135.
  6. فطرس، محمد حسین، و هوشیدری، مریم (1395). بررسی تاثیر نوسانات قیمت نفت خام بر نوسانات بازدهی بورس اوراق بهادار تهران رویکرد GARCH چند متغیره، پژوهشنامه اقتصاد انرژی ایران، 5(18)، 177-147.
  7. موسوی جهرمی، یگانه، و رستمی، نسرین (1394). بررسی اثرات نامتقارن تکانه­های سیاست­های پولی بر شاخص کل قیمت سهام در بورس اوراق بهادار تهران. دانش مالی تحلیل اوراق بهادار، 8(26)، 62-47.
 
  1. Abbasian, E., Moradpour, O. M., & Abbasioun, V. (2008). The impact of macroeconomic variables on the stock market: Evidence from Tehran stock exchange market. Economic Research, 12(36), 135-152‏ (In Persian).
  2. Abugri, B. A. (2008). Empirical relationship between macroeconomic volatility and stock returns: Evidence from Latin American markets. International Review of Financial Analysis, 17(2), 396–410.
  3. Alfaro, L., Chanda, A., Kalemli-Ozcan, S., & Sayek, S. (2004). FDI and economic growth: The role of local financial markets. Journal of International Economics, 64(1), 89-112.
  4. Bildirici, M., & Ersin, Ö. (2014). Modeling Markov switching ARMA-GARCH neural networks models and an application to forecasting stock returns. The Scientific World Journal, 2014.
  5. Blazsek, S., & Downarowicz, A. (2008). Regime switching models of hedge fund returns. Working Papers (Universidad de Navarra. Facultad de Ciencias Económicas y Empresariales), (12), 1.
  6. Brooks C. (2014). Introductory econometrics for finance. Cambridge University Press.
  7. Cai, J. (1994). A Markov model of switching-regime ARCH. Journal of  Business and Economic Statistics, 12(3), 309-316.
  8. Candelon, B., Ahmed, J., & Straetmans, S. T. M. (2012). Predicting and capitalizing on stock market bears in the US. METERO, Maastricht research school of Economics of Technology and Organizations.
  9. Chauvet, M., & Potter, S. (2000). Coincident and leading indicators of the stock market. Journal of Empirical Finance7(1), 87-111.
  10. Choong, C. K., Baharumshah, A.Z., Yuzop, Z., & Habibullah, M.S. (2010). Private capital flows, stock market and economic growth in developed and developing countries: A comparative analysis. Japan and the World Economy, 22 (2), 107–117.
  11. Corradi, V., Distaso, W. & Mele, A. (2013). Macroeconomic determinants of stock volatility and volatility premiums. Journal of Monetary Economics, 60(2), 203–220.
  12. Diaz, E. M., Molero, J. C., & de Gracia, F. P. (2016). Oil price volatility and stock returns in the G7 economies. Energy Economics, 54, 417-430.
  13. Dueker, M. J. (1997). Markov switching in GARCH processes and mean-reverting stock-market volatility. Journal of Business & Economic Statistics, 15(1), 26–34.
  14. Fetras, M, H., Hoshidari, M. (2016). The effect of crude oil price volatility on volatility in Tehran Stock market: Multivariate GARCH approach. Journal of Iranian Energy Economics, 5(18), 147-177 (In Persian).
  15. Francq, C., & Zakoïan, J. M. (2002). Comments on the paper by Minxian Yang, some properties of Vector Autoregressive process with Markov switching coefficients. Econometric Theory, 18(3), 815-818.
  16. Francq, C., Roussignol, M., & Zakoian, J.M. (2001). Conditional heteroskedasticity driven by hidden Markov chains. Journal of Time Series Analysis, 22(2), 197–220.
  17. Fraser, P., & Power, D. M. (1997). Stock return volatility and information: An empirical analysis of Pacific Rim, UK and US equity markets. Applied Financial Economics, 7(3), 241–253.
  18.  Gil-Alana, L. A., Gupta, R., Olubusoye, O. E., & Yaya, O. S. (2016). Time series analysis of persistence in crude oil price volatility across bull and bear regimes. Energy109, 29-37.
  19. Gordon, S., & St-Amour, P. (2000). A preference regime model of bull and bear markets. American Economic Review, 90(4), 1019-1033.‏
  20. Gray, S. F. (1996). Modeling the conditional distribution of interest rates as a regime-switching process. Journal of Financial Economics, 42(1), 27–62.
  21. Guidolin, M., & Timmermann, A. (2005). Economic implications of bull and bear regimes in UK stock and bond returns. The Economic Journal, 115(500), 111-143.‏
  22. Haas, M., & Liu, J. C. (2015). Theory for a multivariate Markov-switching GARCH model with an application to stock markets. Beitrage zur Jahrestagung des Vereins fur socialpolitik 2015: Okonomische Entwicklung- Theorie and politik – Session: Financial Econometrics, No. B22-V2
  23. Haas, M., Mittnik, S., & Paolella, M. S. (2004). A new approach to Markov-switching GARCH models. Journal of Financial Econometrics, 2(4), 493–530.
  24. Hallafi, H, R., Saeedi, S, N. (2012). Investigating the dynamic reaction between the uncertainty of exchange rate and Tehran stock price index. Quarterly Journal of Quantitative Economics, 9(1), 37-53 (In Persian).
  25. Hamilton, J. D., & Susmel, R. (1994). Autoregressive conditional heteroskedasticity and changes in regime. Journal of Econometrics, 64(1-2), 307-333.‏
  26. He, X. Z., & Westerhoff, F. H. (2005). Commodity markets, price limiters and speculative price dynamics. Journal of Economic Dynamics and Control, 29(9), 1577-1596.
  27. Heidari, H., Refah-Kahriz, A., & Mohammadzadeh, Y. (2018). Stock market behavior of pharmaceutical industry in Iran and macroeconomic factors. Economic Change and Restructuring. 1-23. https://doi.org/10.1007/s10644-018-9228-7
  28. Henneke, J. S., Rachev, S. T., Fabozzi, F. J. & Nikolov, M. (2011). MCMC-based estimation of Markov switching ARMA GARCH models. Applied Economics, 43(3), 259–271.
  29. Kadir, H.B.A., Selamat, Z., Masuga, T., & Taudi, R. (2011). Predictability power of interest rate and exchange rate volatility on stock market return and volatility: Evidence from Bursa Malaysia. International Conference on Economics and Finance Research IPEDR (Vol 4).
  30. Kim, C. J. (1994). Dynamic linear models with Markov-switching. Journal of Econometrics, 60(1-2), 1–22.
  31. Klaassen, F. (2002). Improving GARCH volatility forecasts with regime-switching GARCH. Empirical Economics, 27(2), 363–394.
  32. Lim, S. Y., & Sek, S. K. (2014). Exploring the inter-relationship between the volatilities of exchange rate and stock return. Procedia Economics and Finance, 14, 367-376.
  33. Maheu, J. M., McCurdy, T. H., & Song, Y. (2012). Components of bull and bear markets: Bull corrections and bear rallies. Journal of Business & Economic Statistics, 30(3), 391-403.‏
  34. Maio, P., & Philip, D. (2015). Macro variables and the components of stock returns. Journal of Empirical Finance, 33, 287-308.‏
  35. Marcucci, J. (2005). Forecasting stock market volatility with regime-switching GARCH models. Studies in Nonlinear Dynamics and Econometrics, 9(4), 1-53.‏
  36. Mousavi, J. Y., & Rostami, N. (2015). Asymmetric effects of monetary policy shocks on stock price index in Tehran stock exchange. Financial Knowledge of Securities Analysis, 8(26), 47-62 (In Persian).
  37. Murungi, C. (2012). The impact of inflation on stock market returns and volatility: Evidence from Nairobi securities exchange. Unpublished MBA report.
  38. Nelson D. B. (1991). Conditional heteroskedasticity in asset returns: a new approach. Econometrica: Journal of the Econometric Society, 347-370.
  39. Ntantamis, C., & Zhou, J. (2015). Bull and bear markets in commodity prices and commodity stocks: Is there a relation?. Resources Policy, 43, 61-81.
  40. Nyberg, H. (2013). Predicting bear and bull stock markets with dynamic binary time series models. Journal of Banking & Finance, 37(9), 3351-3363.
  41. Olweny, T., & Omondi, K. (2011). The effect of macro-economic factors on stock return volatility in the Nairobi stock exchange, Kenya. Economics and Finance review, 1(10), 34-48.
  42. Ouma, W. N. & Muriu, P. (2014). The impact of macroeconomic variables on stock market returns in Kenya. International Journal of Business and Commerce, 3(11), 01-31.
  43. Pagan, A. R., & Sossounov, K. A. (2003). A simple framework for analysing bull and bear markets. Journal of Applied Econometrics, 18(1), 23-46.
  44. Pinjaman, S. B., & Aralas, S. B. (2015). The dynamic stock returns volatility and macroeconomic factors in Malaysia: A sectoral study. South East Asia Journal of Contemporary Business, Economics and Law, 8(3), 33-40.
  45. Raee, R., Mohammadi, S., & Saranj, A. (2014).
    Tehran stock exchange dynamics in a Markov regime switching EGARCH-in-mean model. Journal of Financial Research, 16(1), 77-98 (In Persian).
  46. Rezazadeh, A. (2016). The impact of macroeconomic variables on Tehran stock market returns volatility: GARCH-X approach. Quarterly Journal of Applied Theories of Economics, 3(2), 121-136 (In Persian).
  47. Schuknecht, L., Von Hagen, J., & Wolswijk, G. (2009). Government risk premiums in the bond market: EMU and Canada. European Journal of Political Economy, 25(3), 371-384.
  48. Schumpeter, J.A., (1912). The theory of economic development. In: Brookings papers on economic activity. Harvard University Press, Cambridge, MA, 141–195.
  49. Schwert, G. W. (1989). Why does stock market volatility change over time?. The Journal of Finance, 44(55), 1115–1153.
  50. Shariatpanahi, M., Bayati, M. (2006). Relationship between inflation with TEPIX and TEDIX. Empirical Studies in Finance Accounting Quarterly, 4(13), 139-154 (In Persian).
  51. Sharpe, W. F. (1963). A simplified model for portfolio analysis. Management Science, 9(2), 277-293.‏
  52. Westerhoff, F., & Reitz, S. (2005). Commodity price dynamics and the nonlinear market impact of technical traders: Empirical evidence for the US corn market. Physica A: Statistical Mechanics and its Applications349(3), 641-648.